Problem 1 - Attitude Control of Satellite

Cube with length L=0.1 m. The inertia tensor is given by
IgCG=Igb=mR442000R552000R662
Where m=10 kg, and R44=R55=R66=L/6 are the radii of gyration with respect to the CG. The attitude dynamics are given by
q˙=Tq(q)ωIgω˙−S(Igω)ω=τ
Problem 1.1
Skew-Symmetric Matrix
The term vx is the skew-symmetric form of v
V=0c−b−c0ab−a0
^36cc79
Where
v=abc
Link to original
We want to find the equilibrium x˙=0, where q=[η,ϵ1,ϵ2,ϵ3]T=[1,0,0,0]T, and τ=0
The first equation give us
q˙=Tq(q)ωeq. (2.77)=21[−ϵTηI3+S(ϵ)]ω
Putting in the values of q we get:
η˙ϵ1˙ϵ2˙ϵ3˙=21010000100001ω1ω2ω3=210ω1ω2ω3
We can therefore see that ϵ˙=ω=0 from x˙=0
Putting this into the second equation, we get
Igω˙−S(Ig⋅0)⋅0=0w˙=0
We therefore get that the equilibrium point x0 is
x˙=[ϵ˙ω˙]=[00]=0
This is when x0=0
We now want to linearize the spacecraft model about x=x0
x˙=[ϵ˙ω˙]=Ax+Bτ
1.4
q~q1⊗q2=[η~ϵ~]=qˉd⊗q=[η1η2−ϵ1⊺ϵ2η1ϵ2+η2ϵ1+S(ϵ1)ϵ2]
S(ϵ1)ϵ2S(ϵ1)ϵ2=0ϵ13−ϵ12−ϵ130ϵ11ϵ12−ϵ110ϵ21ϵ22ϵ23=−ϵ13ϵ22+ϵ12ϵ23ϵ13ϵ21−ϵ11ϵ23−ϵ12ϵ21+ϵ11ϵ22
From this definition we get:
q~=qˉd⊗qq~=η1η2−ϵ11ϵ21−ϵ12ϵ22−ϵ13ϵ23η1ϵ21+η2ϵ11−ϵ13ϵ22+ϵ12ϵ23η1ϵ22+η2ϵ12+ϵ13ϵ21−ϵ11ϵ23η1ϵ23+η2ϵ13−ϵ12ϵ21+ϵ11ϵ22∣q1=qd,q2=q=ηd2+ϵd1ϵ1+ϵd2ϵ2+ϵd3ϵ3ηdϵ1−ηϵd1+ϵd3ϵ2−ϵd2ϵ3ηdϵ2−ηϵd2−ϵd3ϵ1+ϵd1ϵ3ηdϵ3−ηϵd3+ϵd2ϵ1−ϵd1ϵ2
qd(t)=ϕ(t)θ(t)ψ(t)=015cos(0.1t)10sin(0.05t)
1.7
Using the following Lyapunov function
V=21ω~TIgω~+2kp(1−η~)
Where wd=0, ϵd=constant, ηd=constant, and
η~˙=−21ϵ~Tω~
a)
The time derivative of V is given by
V˙V˙=dtd(21ω~TIgω~+2kp(1−η~))=ω~Igω~˙−2kpη~˙
Substituting ω~=ω since wd=0, and η~˙=−21ϵ~Tω~, we get
V˙=ω~Igω~˙+kpϵ~Tω~
From equation 2 and 4 in the assignment, we can substitute Igω˙ and τ respectively
V˙V˙V˙V˙=ωT(S(Igω)ω−kdω−kpω)+ϵ~Tkpω=ωTS(Igω)ω−ωTkdω−ωTkpϵ~+ϵ~Tkpω=0−ωTkdω−ϵ~Tkpω+ϵ~Tkpω=ωTkdω■
b)