T(n)=a∗T(bn)+f(n), hvor
f(n) - drivende funksjon
nlogb(a) - vannskillefunksjon
Bevis - Masterteoremet
Run time
if there exists an ϵ>0 such that:
Case 1:
f(n)=O(nlogb(a)−ϵ) → T(n)=θ(nlogb(a))
Aka f(n)≤cnlogb(a)−ϵ
Case 2:
f(n) = θ(nlogb(a)) → T(n)=θ(nlogb(a)∗lg(n))
Case 3:
f(n)=Ω(nlogb(a)+ϵ) → T(n)=θ(f(n))
Aka f(n)≥nlogb(a)+ϵ
(Case 3 also has to satisfy the regularity condition for some constant c<1 and all n
Regularity Condition
a∗f(bn)≤c∗f(n)
Link to original
Exception of case 2:
if f(n)=θ(nlogba∗lgkn)
then T(n)=θ(nlogb(a)∗lgk(n)∗lg(n))
Examples
T(n)=3T(9n)+θ(n∗lg(n))
Vannskillefunksjonen blir:
→ nlog9(3)=n1/2=n
og siden f(n) inneholder et logaritmisk ledd blir
→ θ(n∗lg2(n))
T(n)=64T(4n)+3n3+7n
Siden θ(f(n))=θ(3n3+7n)=θ(n3) er lik vannskillefunksjonen blir
→ θ(n3∗lg(n))

Given FUNCTION−C(n)=θ(n)
TA(n)=θ((n))+Ta(3n)+TB(n)
TB(n)=TA(3n)+θ((n))=TA(n)
→ TA(n)=2Ta(3n)+θ((n))
Since f(n)=Ω(nlog3(2)+ϵ)=θ(n)
Then FUNCTION−A(n)=θ(nlog3(2))