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Recap from last week

An estimator is a random variable
. . . because it depends on the
(random) data.

We can talk about its distribution,
expectation and covariance.

An estimator is unbiased if
E [x − x̂] = 0.

LMMSE estimation

x̂ = E [x] + Cov(x, z)Cov(z)−1(z − E [z])

is the estimator of the form x̂ = Az + b
that minimizes

MSE(x̂) = E
[
∥x − x̂∥2

2

]
.

The multivariate Gaussian

p(x, y) = N
([

x
y

]
;

[
a
b

]
,

[
Pxx Pxy

PT
xy Pyy

])

Quadratic forms.
Moment parametrization vs
canonical parametrization.

Marginalization and conditioning
In moment parametrization,
conditioning is given by

µx|y = a + Pxy P−1
yy (y − b)

Px|y =Pxx − Pxy P−1
yy PT

xy .

This leads to the Product Identity.
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Recursive Bayesian estimation: Model and key concepts

We study systems whose structure fits the graphical model below:

x0 x1 x2 x3 . . . xk−1 xk xk+1 . . .

z1 z2 z3 zk−1
zk zk+1

The horizontal arrows represent a process model of the form p(xk | xk−1)

The vertical arrows represent a measurement model of the form p(zk | xk ).

This structure reflects the following Markov assumptions

p(xk | x1, . . . , xk−2, xk−1, z1, . . . , zk−2, zk−1) = p(xk | xk−1)

p(zk | x1, . . . , xk−2, xk−1, xk , z1, . . . , zk−2, zk−1) = p(zk | xk )
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Recursive Bayesian estimation: The Bayes filter

In the Bayesian philosophy we want a pdf as our solution. This pdf may or may not be
given by parameters such as expectation, covariance etc.

What do we know about xk after observing z1:k = (z1, z2, . . . , zk )?

The total probability theorem yields the predicted density

p(xk |z1:k−1) =

∫
p(xk |xk−1)p(xk−1|z1:k−1)dxk−1.

Bayes’ rule yields the posterior density

p(xk |z1:k ) =
p(zk |xk )p(xk |z1:k−1)

p(zk | z1:k−1)
∝ p(zk |xk )p(xk |z1:k−1).

Remark: Violations of the Markov assumptions can be handled by replacing the
Markov chain by a higher order Markov chain that models the temporal correlations.
We must then extend the state vector with corresponding states.
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Linearity, Gaussianity and the Kalman filter

“Everything should be made as simple as possible, but not simpler.”

In general, we cannot find a closed-form solution to the Bayes filter.

If the posterior can be described with reasonable accuracy by a few parameters
(e.g., expectation and covariance), then we should look for a compact
representation.

Closed-form solution to the Bayes filter = Kalman filter

When does a closed-form solution to the Bayes filter exist?

When the initial density is Gaussian N (x0 ; x̂0,P0)

. . . and the Markov model is Gaussian-linear N (xk ; Fxk−1,Q)

. . . and the likelihood is Gaussian-linear N (zk ; Hxk ,R)

. . . and standard independence assumptions apply.
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The prediction step of the Kalman filter

The predicted density is given by

p(xk |z1:k−1) =

∫
p(xk |xk−1)p(xk−1|z1:k−1)dxk−1

=

∫
N (xk ; Fxk−1,Q)N (xk−1 ; x̂k−1,Pk−1)dxk−1

=N (xk ; Fx̂k−1,FPk−1FT + Q)

·
∫

N (xk−1 ; some vector , some covariance matrix )dxk−1

=N (xk ; x̂k|k−1,Pk|k−1).

x̂k−1 is the previous state estimate.

Pk−1 is the previous covariance.

x̂k|k−1 = Fx̂k−1 is the predicted state estimate.

Pk|k−1 = FPk−1FT + Q is the predicted covariance.
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The update step of the Kalman filter

The posterior density is given by

p(xk |z1:k ) ∝ p(zk |xk ) p(xk |z1:k−1)

=N (zk ; Hxk ,R)N (xk ; x̂k|k−1,Pk|k−1)

=N (zk ; Hx̂k|k−1,HPk|k−1HT + R)N (xk ; x̂k ,Pk )

∝N (xk ; x̂k ,Pk ).

x̂k = x̂k|k−1 + Wk (zk − Hx̂k|k−1) is the posterior state estimate.

Pk = (I − Wk H)Pk|k−1 is the posterior covariance.

Wk = Pk|k−1HT(HPk|k−1HT + R)−1 is the Kalman gain.
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More about the covariance
Joseph form

Pk = (I − Wk H)Pk|k−1(I − Wk H)T + WRWT

Information form

P−1
k = HTR−1H + P−1

k|k−1

Orthogonality properties

The estimation errors x̃k = x̂k − xk do not constitute a white sequence:

E [x̃k x̃T
k−1] = (I − Wk H)FPk .

The innovations νk = zk − Hx̂k|k−1 on the other hand are a white sequence:

E [νkν
T
j ] = 0 if k ̸= j ⇔ p(z1:k ) =

k∏
j=1

p(νj).
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Example run of the Kalman filter
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Example run of the Kalman filter
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Example run of the Kalman filter
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Example run of the Kalman filter
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Example run of the Kalman filter
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Example run of the Kalman filter
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Example run of the Kalman filter
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The tuning problem
Given the discrete time model

xk = Fxk−1 + uk + vk , zk = Hxk + wk , vk ∼ N (0,Q), wk ∼ N (0,R)

we must determine the values of the noise matrices Q and R that . . .

faithfully represent the uncertainties of the process and measurement models.
give the Kalman filter optimal accuracy and robustness.

The process noise covariance
The matrix Q says something about
how the system is expected to evolve
between two time steps.

But the system dynamics are
generally modeled in continuous
time.

Therefore we need to relate Q to a
continuous-time model of the form

ẋ = Ax + Bu + Gn

The measurement noise covariance
The matrix R says something about
how accurate our measurement
devices (sensors) are.

This is fully encapsulated by the
discrete-time model.
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Stochastic processes

Consider a stochastic vector

x =
[
x(t1) x(t2) . . . x(tn)

]T

where x(tk ) is the value of the stochastic variable x at time tk .

Let the discretization length T = tk − tk−1 go towards zero.

Every realization of x will then be equivalent to a function x(t). Such a random
function is known as a stochastic process.

t

To fully specify x(t) in the general case we would need the joint distribution of all
tuples x(t1) . . . , x(tk ) for any number k .

We restrict our attention to stochastic process which can be defined in terms of
their construction or in terms of first- and second-order moments.
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A very simple stochastic process

A random constant
Let the function x(t) be given by x(t) = a where a ∼ N (0, 1). Different realizations of
this stochastic process can be depicted as follows:

x

t

-2

-1

1

2

Any number that depends on x(t), such as a time integral of x(t), will be a random
variable. Let

y =

∫ t

0
x(τ)dτ.

Then it can be shown that y ∼ N (0, t2).
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A not so simple stochastic process

The Wiener process
Define the stochastic process x(t) by

x(nT ) =
n∑

i=1

xi where xi ∼ N (0,T ) i.i.d.

Then we define the Wiener process b(t) as the limit

b(t) = lim
T→0

x(t).

t
1 2 3 4 5 6 7 8 9

−5
−4
−3
−2
−1

0
1
2
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More about the Wiener process

Alternative definition
Mathematicians like to define the Wiener process in terms of 4 fundamental properties:

1 b(0) = 0.
2 b(t) has independent increments. That is: If t1 < t2, then b(t2)− b(t1) is

independent of the past values b(s) for s < t1.
3 b(t) has Gaussian increments: If t1 < t2 then b(t2)− b(t1) ∼ N (0, t2 − t1)
4 b(t) is continuous in t .

Statistics of the Wiener process
The expectation of the Wiener process is always 0.

The variance of the Wiener process at any particular time is

E [b(t)2] = Var

[
n∑

i=1

xi

]
= nT =

t
T

T = t .
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White Gaussian noise

We define continuous-time white Gaussian noise as the derivative of the Wiener
process

n(t) = lim
∆→0

b(t +∆)− b(t)
∆

.

We always use white noise as a driving mechanism in stochastic continuous time
models.

For this to make sense, the contributions from a white noise process over a limited
time interval must be finite and non-zero:

⇒ 0 < Var
[∫ s

0
n(t)dt

]
< ∞.

Making matters complicated, this requirement in turn implies that

Var [n(t)] = ∞.

White noise is a mathematical abstraction because it has infinite energy.
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The autocorrelation function

Motivation: We want to have a useful description of important stochastic processes
such as white Gaussian noise and its relatives.

Definition: Autocorrelation function (ACF)

The ACF of a stochastic process x(t) is R(t1, t2) = E [x(t1)x(t2)T].

Definition: Wide-sense stationarity
A stochastic process x(t) is said to be wide-sense stationary if its expectation is
constant and its ACF can be written as a function of τ = t2 − t1:

R(τ) = E [x(t)x(t + τ)T].

Example: ACF of white Gaussian noise
The ACF of the white noise process defined on the previous slide is

R(τ) = δ(τ).

See the proof of Theorem 4.3.2 in the book for a derivation of this result.
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Stochastic linear systems
What happens to white noise (or any other stochastic process) when it is used as input
to a system with a given impulse response?

x(t) h(t) y(t)

Convolution formulas for the ACF
Let x(t) be a scalar real-valued stochastic process with ACF Rxx(t1, t2) and let

y(t) =
∫ ∞

−∞
h(t − α)x(α)dα

where h(t) also is scalar real-valued. The the ACF of y(t) is given by

Rxy (t1, t2) =
∫ ∞

−∞
Rxx(t1, t2 − α)h(α)dα

Ryy (t1, t2) =
∫ ∞

−∞
Rxy (t1 − α, t2)h(α)dα.
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The Gauss-Markov process

Consider a system with impulse response h(t) = e−ctu(t).

We send white noise n(t) into the system, starting at t = 0.

What is then the ACF of the output?

Rxy (t1, t2) =qe−c(t2−t1)u(t1)u(t2 − t1)

Ryy (t1, t2) =
q
2c

(1 − e−2ct1)e−c(t2−t1).

The formulas are valid if 0 < t1 < t2.

In the limit as t1 → ∞ the Gauss-Markov process becomes a stationary process
with ACF

q
2c

e−c|t2−t1|.
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Continuous time modeling: Accelerometer with bias

The Gauss-Markov process can be used to model a slowly varying accelerometer bias.

Let the state vector be

x =

 Position of the vehicle
Velocity of the vehicle

Bias of the accelerometer


The system is described by a state-space model of the form ẋ = Ax + Bu + Gn
where

A =

0 1 0
0 0 1
0 0 −c

 , B =

0
1
0

 , G =

0 0
1 0
0 1


and where

n ∼ N (0,Dδ(t − τ)) where D =

[
σ2

a 0
0 σ2

b

]
.

Notice that the accelerometer readings are treated as a control input and not as
measurements.
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Continuous time modeling: The CV model in 2 dimensions

This is perhaps the most common model used in sensor fusion.

The model is of the form ẋ = Ax + Gn where the matrices are given by

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 and G =


0 0
0 0
1 0
0 1


and the process noise is given by

n ∼ N (0,Dδ(t − τ)) where D =

[
σ2

a 0
0 σ2

a

]
.

We see that the process noise strength is solely given by the number σa, which is
a measure of root-mean-square acceleration.

Since the model essentially integrates white noise the two positional states
become independent Wiener processes.
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Discretization

Consider the linear continuous-time state space model

ẋ = Ax + Bu + Gn, n ∼ N (0,Dδ(t − τ).

A discrete time solution can be written

xk = Fxk−1 + uk + vk

where

F =eA(tk−tk−1), uk =

∫ tk

tk−1

eA(tk−τ)Bu(τ) dτ and vk =

∫ tk

tk−1

eA(tk−τ)Gn(τ) dτ.

From continuous to discrete time process noise covariance
Let the discretization time be fixed at T = tk − tk−1. The covariance matrix of vk in the
discrete-time model is then given by

Q = E [vk vT
k ] =

∫ T

0
e(T−τ)AGDGTe(T−τ)AT

dτ
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Evaluating the discrete-time process noise matrix

First/nth order approximations

The simplest possible approximation is Q ≈ GDGTT .

Not recommended because it may be singular even if the true Q is SPD.

Higher-order approximations are often used.

Notice the linear dependence on the sampling interval T . This reflects the fact that
the variance of the Wiener process increases linearly with time.

Van Loan’s formula
Define the matrices V1 and V2 according to

exp
([

−A GDGT

0 AT

]
T
)

=

[
× V2

0 V1

]
.

Then we can find Q according to Q = VT
1V2.
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How to tune the process noise covariance

There are at least 3 approaches that can be used to determine suitable values for the
process noise covariance.

Purely physical considerations
In a CV model we may use the largest accelerations observed as a guideline for
how large σa needs to be.

In the accelerometer model we can calculate σa as a continuous-time equivalent of
of the specified accuracy of the accelerometer.

Consistency analysis
Set the process noise as high as required to make the data or state estimates
plausible.

Maximum likelihood estimation
Find the most likely value of the process noise strength given the data.

The process noise strength should not depend on the measurement model.
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The concept of filter consistency

A filter is said to be consistent if

1 The state errors are acceptable as zero mean.
2 The state errors have magnitude commensurate with the state covariance yielded

by the filter.
3 The innovations are acceptable as zero mean.
4 The innovations have magnitude commensurate with the innovation covariance

yielded by the filter.
5 The innovations are acceptable as white.

Criteria 2 and 4 are most important, and are tested by means of the normalized
estimation error squared (NEES) and the normalized innovations squared (NIS):

ϵk =(x̂k − xk )
TP−1

k (x̂k − xk )

ϵνk =νT
k S−1

k νk = (zk − ẑk|k−1)
TS−1

k (zk − ẑk|k−1).
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χ2-test for filter consistency (NEES)
Suppose that x ∈ Rd .
We perform N Monte-Carlo simulations of our Kalman filter.
Then a 95% confidence interval for the average (ANEES) value of ϵk is given by

lower = chi2inv(0.025,Nd)/N and upper = chi2inv(0.975,Nd)/N

t
1 2 3 4 5 6 7

lower upper

t

lower

upper

If ANEES lies below the χ2 limits we can expect the filter to be overly conservative.
If ANEES lies above the χ2 limits we can expect the filter to be overconfident and
put too little emphasis on the measurements.

Use NIS in a similar manner if working on real data without ground truth.
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Example of consistency-based tuning

Finding a suitable value for σa in the CV model originally used in the radar-based
Autosea tracker.1

284 E.F. Wilthil et al.

Table 1 Vessel parameters in the “Trondheimsfjord II” scenario based onAIS information.Note the
large diversity in ship type, size andmeanSOG.The datawas recorded on board theTELEMETRON
vessel. KORSFJORD, GLUTRA and TRONDHEIMSFJORD II are passenger ferries that cross the
fjord in Trondheim regularly

Name Type Length × Breadth Mean SOG (m/s)

GLUTRA Passenger 94.8 m × 16.0 m 5.3

SULA Cargo 87.9 m × 12.8 m 5.7

KORSFJORD Passenger 122 m × 16.7 m 5.6

TRONDHEIMSFJORD II High speed 24.5 m × 8 m 12.8

TELEMETRON Pleasure craft 8 m × 3 m 13.1

Table 2 Process noise evaluation via AIS filter consistency. The (r1, r2) interval is the two-sided
95% probability concentration region for the χ2 distribution related to the corresponding NIS. This
varies with according to the AIS data record length N . The NIS values that are closest to being
covariance-consistent, i.e. closest to the 95% probability region, are emphasised in bold

Name σa = 0.05 σa = 0.5 (r1, r2) N

NIS AI NIS AI

GLUTRA 4.67 −0.02 0.90 0.01 (3.47, 4.55) 109

SULA 3.61 −0.22 0.51 −0.10 (3.49, 4.56) 106

KORSFJORD 71.8 −1.33 4.31 −0.44 (3.52, 4.51) 127

TR.FJORD II 11.3 −0.62 3.24 −0.16 (3.76, 4.24) 533

TELEMETRON 371 −0.04 4.45 −0.01 (3.77, 4.23) 579

which corresponds to σa = 0.05, or they show significantly more maneuverability,
where σa = 0.5 gives more appropriate values of the NIS. For simplicity it may be
desirable to have a single value for the process noise variance. Choosing σa = 0.5
will thus in some cases give conservative values for the filter covariance, which
presumably will inflict less risks of track-loss than the opposite choice. This value
has been used in the following radar target tracking results.

5.4 Tracking Performance

We study the PDAF-based tracking system applied to the “Gunnerus” scenario in
this section. The resulting tracks are shown in Fig. 10.

First, observe that many of the tracks originate from land. The tracks stay close to
or on land as long as the feature is in range of the radar. When the feature is outside
of the radar range, due to the movement of Telemetron or radar range adjustments,
some tracks start to move out into open sea. Since they are out of range of the radar,
no measurements are associated with them, and they are terminated after 5 scans
without measurements. The average length of a confirmed track which is eventually

1Wilthil et al. (2017): “A target tracking system for ASV collision avoidance based on the PDAF”, Springer.
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Testing the whiteness of the innovations

Whiteness test in Monte-Carlo simulations
Let νk be one of the innovation states in the vector νk . Let N be the number of
Monte-Carlo simulations. Then the distribution of the sample autocorrelation

ρkj =

N∑
i=1

ν
(i)
k ν

(i)
j√

N∑
i=1

(ν
(i)
k )2

N∑
i=1

(ν
(i)
j )2

should tend to N (0, 1/N) for all k ̸= j when N is large.

Single-run whiteness test

The variance of the time-average autocorrelation should tend towards 1/K :

ρ̄j =

K∑
k=1

νkνk+j√
K∑

k=1
ν2

k

K∑
k=1

ν2
k+j
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Tuning the measurement noise covariance
For exteroceptive sensors, the appropriate values in R depend on

The sensor resolution.
The extent of targets or landmarks.

Example: Point targets with pixellated sensor
2-dimensional sensor with square cells of fixed resolution ∆x .

x = [x , y , vx , vy ]
T.

Measurement matrix H = [I2, 0]

p(z − Hx|x) =
{

1/∆x2 if ∥z − Hx∥∞ < ∆x/2
0 otherwise.

This distribution can be approximated by a Gaussian

p(z|x) = N (z ; Hx,R)

with the same covariance:

R =

[
∆x2

12 0
0 ∆x2

12

]
.
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More about the measurement model

Mild nonlinearities in the measurement model can sometimes be removed by
converting the measurements. We must then also convert R accordingly.

Nonlinear model.
The model is of the form zk = h(xk ) +wk ,
wk ∼ N (0,R) where

h(xk ) =

[√
x2 + y2

atan2(y , x)

]
R =

[
σ2

r 0
0 σ2

θ

]

Converted measurements.
The model is of the form zk = Hxk + wk ,
wk ∼ N (0,Rc) where

H =

[
1 0 0 0
0 1 0 0

]
Rc = JRJT, J =

∂

∂zk
h−1(zk )

For more sophisticated conversion techniques see Lerro & Bar-Shalom (1993): “Tracking with debiased

consistent converted measurements versus EKF”, IEEE-TAES.

Measurement conversion is generally preferable to EKF techniques because the
linearization in an EKF can lead to filter instability.
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Maximum likelihood estimation of system parameters
Theorem for maximum likelihood estimation
Assume that both Q and R depend on an unknown parameter vector q. The maximum
likelihood estimate of q, if it exists, can then be found as

qML = argmax
q

∑
k

logN (zk ; Hx̂k|k−1,Sk )

Example: Estimating σa and σz for CV model
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The likelihood function, normalized relative to its maximum, for two realizations of the CV model.
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LTV and LTI systems
We point out the main distinction in the continuous case. The discrete case is similar.

Linear time-variant systems
The system can be of the form

ẋ =A(t)x + B(t)u + G(t)n
z =H(t)x + w

The system matrices are allowed to depend on t .

Linear time-invariant systems
The system can be of the form

ẋ =Ax + Bu + Gn
z =Hx + w

The system matrices are not allowed to depend on t .

In both cases, the matrices are assumed known.
Uncertainty in the matrices can be modeled as a non-linear system.
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Observability for LTI systems

Continuous-time observability
Consider a continuous-time LTI system of the form

ẋ =Ax + Bu z =Hx.

The observability matrix of the system is

QO =


H

HA
...

HAd

 .

We say that the pair [A,H] is observable if QO is of full rank.

Discrete-time observability
Simply replace A and B with their discrete-time equivalents.
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Example: Observability for CV model

Consider the system model

A =

[
0 1
0 0

]
H =

[
h1 h2

]
.

The observability matrix is then

QO =

[
H

HA

]
=

[
h1 h2

0 h1

]
.

Case 1: Only position measurements
h2 = 0 ⇒ QO = I ⇒ QO is of full rank ⇒ The system is observable.

Case 2: Only velocity measurements
h1 = 0 ⇒ Second row of QO is zero ⇒ The system is not observable.
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The road ahead

The EKF

x

y

h(x̂n|n−1) + H∆xn

h(x̂n|n−1)

∆xn

Particle filters
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