
TTK4135 Optimization and Control

Helicopter Lab

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Trondheim
Updated: January 2023

Contents

1 Practical Information 3

2 Health, Safety, and Environment (“HMS”) 4

3 Objective 4

4 Lab report 5
4.1 Plots . 5

5 System Description 6
5.1 QuaRC, Simulink, and Realtime Workshop 6
5.2 Hardware . 9

5.2.1 Quanser Q4 . 9
5.2.2 Power Module . 11

6 Some Advice 11

7 Starting Point for the Programming 11

8 Model Derivation 13

9 Before you Start 14

10 Exercises 15
10.1 Repetition/introduction to Simulink/QuaRC and MATLAB . 16

10.1.1 Solve the following tasks before coming to the lab . . 16
10.1.2 At the lab . 17

10.2 Optimal Control of Pitch/Travel without Feedback 18
10.2.1 Solve the following tasks before coming to the lab . . 18
10.2.2 At the lab . 21

10.3 Optimal Control of Pitch/Travel with Feedback (LQ) 21
10.3.1 Solve the following tasks before coming to the lab . . 21
10.3.2 At the lab . 23

10.4 Optimal Control of Pitch/Travel and Elevation with Feedback 23
10.4.1 Solve the following tasks before coming to the lab . . 23
10.4.2 At the lab . 24

11 Additional Information 26
11.1 Recording Data . 26

2

1 Practical Information

If you’ve taken the course TTK4115 Linear System Theory, then you’ve
implemented simple feedback controllers to control the helicopter with a
joystick. In this course you will implement open-loop predictive control,
which uses optimization to predict optimal input/state trajectories a cer-
tain amount of time into the future. You will then stabilize this optimal
trajectory using feedback control (LQ).

Some general information about the LAB:

� The assignment is compulsory, and should be performed in groups of
two students.

� The problem formulation and MATLAB files can be downloaded from
Blackboard.

� The helicopters are in Elektroblokk B, rooms B113, B117, B121 and
B125. The helicopters are numbered 1 to 10. Helicopter number 2 is
used as a spare, please do not use this.

� If you can’t access the building, you need to have an activated en-
trance card. Third year students at the Department of Engineering
Cybernetics can activate their student card directly at the “Seksjon for
bygningstjenester” (Information Desk) at Stripa. All other students
following the course must first get a statement from the ITK depart-
ment office (D144) to confirm that they actually follow the course
before they can activate their card.

� If you can’t log on to the lab computers, you should get a user id
for the computer network at Department of Engineering Cybernet-
ics. This can be obtained by consulting the department office at The
Department of Engineering Cybernetics (D144).

� The project work is based on using MATLAB/Simulink and the Op-
timization Toolbox for optimal control.

� In the lab, MATLAB version R2020b is installed, including Simulink
and QUARC.

� Hints on how to solve parts of the exercises might be posted on Black-
board and updated as it becomes clear what most students find diffi-
cult.

� The tentative deadline for handing in the project work is April 21,
2023, in Blackboard by 23:59. Each group should hand in only one
report.

3

2 Health, Safety, and Environment (“HMS”)

The first three items on this list should be obvious, but to be on the safe
side:

� Keep fingers off the propellers while they are running.

� Remember to turn off the power-module when you leave the lab.

� Stand by to catch the helicopter when it is flying. The system is rather
unstable and quite sensitive, so avoid crash landings. Also, stand by
to either turn the power supply off or to stop the program.

Furthermore, you are required to

� Familiarize yourself with the general safety instructions for the department
(https://www.itk.ntnu.no/english/about/hse), including escape
routes, fire extinguishers, and first aid.

� Familiarize yourself with safety instructions for lab.

� Report all equipment errors.

� Think safety: Minimize both the probability and consequences of un-
wanted events,

min risk = frequency × consequence (1)

3 Objective

The purpose of this exercise can be summarized by the following items:

� The students should get practice in formulating a dynamic optimiza-
tion problem, as well as discretizing and solving the resulting problem
using a computer.

� The exercise should illustrate the implementation and practical use of
optimal control with and without feedback.

� A modern environment for real-time system development based on
automatic generation of program code from Simulink block diagrams
is used.

The students are expected to spend about 24 hours working on this
project.

4

https://www.itk.ntnu.no/english/about/hse
https://www.itk.ntnu.no/english/about/hse
https://www.itk.ntnu.no/english/about/hse

4 Lab report

A lab report describing what has been done in this project work should be
handed in after the project work is completed. For each part of the exercise
the report should include

� printouts of data from relevant experiments (plots),

� relevant model derivations, calculations and parameter values (remem-
ber to include units and scaling),

� discussion and analysis of the results,

� Simulink diagrams and MATLAB code that shows what has been done.
(do not include code that is the same as in the previous task or that
was provided via template and has not been edited)

When the report is evaluated, documented calculations, experimental
results, analysis and discussion of the results, skills in MATLAB/Simulink,
and the quality of the written documentation of the results will be empha-
sized.

The report is graded with ”approved” or ”not approved”, and must be
approved to take the exam in TTK4135.

4.1 Plots

When experimenting at the lab, save all data as it’s gathered! Do not plot
the data, then only save the plot. If you don’t save the data itself, you
cannot replot it later if you change your mind on how the data is presented,
or if you forget to add labels, etc. Another trick is to save the figure as a
”matlab figure”, to easily open the figure at a later time, without having to
rerun the code. Finally, when adding figures to the report, make sure to use
vector graphics rather than pixel based images. Vector based images can be
zoomed in on while remaining crisp/sharp, which is a neat way to check is
your figure is vector based. A simple way making vector figures from your
MATLAB plots is to save the matlab figure as a ”.pdf”, then simply adding
this pdf to in you latex document (may need to be cropped). Search the
interent if you want to find a more streamlined way of adding vector images
of your plots to your report.

Also, do not add large figures to your report! Use ”subplot(3,1,p)” or
similar for the typical trajectories you get in this report. One does not want
to scroll through pages of plots to get to the next section! General rule:
Figures should be as compact/small as possible, while remaining clear, tidy
and readible.

All plots must contain/be:

5

� Title

� Labels on axes

� Units

� Desciption of what all graphs represent (f.ex. legends)

� Properly scaled

� Relevant to the discussion

� Vector graphics

� Clear (the reader must not misunderstand what is presented)

� Tidy (the plots should be organized such that the data is presented in
a logical/reasonable and clean/pretty manner, such that reading them
is easy)

� Readable (the numeric values should be somewhat interpretable)

5 System Description

The helicopter consists of a base with an arm attached, as shown in Figure 1.
The arm has the helicopter body at one end and a balance weight at the
other end, see Figure 2. The arm can be moved up and down around an
elevation axis and rotate around a vertical axis (travel). The helicopter body
itself can also rotate around an axis normal to the arm (pitch). These three
angles are measured with optical position sensors.

Two manipulated variables are available. These are the two DC motors
with propellers attached. The force from the propellers is assumed to be
proportional to the voltage applied. The counter balance is adjusted so that
the weight to be lifted by the propellers is approximately 50 g. If you apply
a voltage of approximately 1.5 V to each motor, the helicopter will take off
from the ground.

The physical data (parameter values) can be found in Table 1 (page 12)
and in the MATLAB file initF.m which are posted on Blackboard.

5.1 QuaRC, Simulink, and Realtime Workshop

QuaRC is Quanser’s new, state-of-the-art rapid prototyping and production
system for real-time control. QuaRC integrates seamlessly with Simulink to
allow Simulink models to be run in real-time on a variety of targets, such as
Windows and Linux.

The control program is made in MATLAB and Simulink, see the ex-
ample in Figure 3. There are separate Simulink blocks for communication

6

Figure 1: Cross section of the Helicopter system.

through the IO-card. After a block diagram for the controller is made in
Simulink, QuaRC and Realtime Workshop are used to run the system. If
these programs are installed, the QuaRC menu is available in Simulink.
Choose “Monitor & Tune” to build, deploy, connect and start the code, see
Figure 4. You can also do this step by step, as can be seen in the figure.
If you only want to try to build the code (without starting the helicopter),
choose “Build for Monitoring”. Note that the button “Build, Deploy &
Start” (with a red cross) should not be used because plotting and storing
data is disabled! The following happens when the build command is exe-
cuted:

� Real-Time Workshop converts the Simulink diagram to C code.

� The code is compiled and linked using Visual C++ into a QUARC
real-time executable.

After this, the program is ready to be deployed. Now the power module
can be turned on, and the program is started by doing the last steps (Deploy,
Connect and Start), or alternatively clicking the “Monitor & Tune” button.

7

Figure 2: Sketch of the helicopter.

To carry out measurements on the system, the sampled data must be
transferred to MATLAB. The “To Workspace”-block in Simulink does not
work in real-time, so real-time plots must be used. This is the usual “Scope”
plot in Simulink.

Before you start a measurement series, the following parameters must
be set in the plot window:

� Buffer size. The length of the measurement series that the plot will
“remember” in seconds

� Sampling frequency.

� The time window that will be displayed in the plot. You should set this
parameter equal to the buffer size. If the option for Maximize Plotting
Frequency is selected, the highest possible sampling frequency will be
implemented.

After a measurement series has been recorded, you can export the data
to the MATLAB workspace or to a file. Go to File → Save in the plot of
interest. The best thing to do is probably to save the data as a mat-file, and
keep them for later use.

8

Figure 3: An example of SIMULINK diagram with QuaRC.

Figure 4: Build QuaRC.

Notice: If it turns out that the data you have transferred has a much
higher sampling frequency than the one you chose, try to record a new
measurement series in the same plot-window and transfer the data again.

Note: If the above method of recording data does not work, see Section
11.

5.2 Hardware

5.2.1 Quanser Q4

The Q4 is an innovative HIL (“hardware in the loop”) control board with
an extensive range of input and output support, see Figure 5. A Quanser
Q4 IO card is connected to the PC bus. The Quanser Q4 card measures the
physical signals coming from the helicopter and converts them into digital

9

signals that can be read by the computer. The card also converts the signals
from the computer that is used as input to the helicopter.

Figure 5: HIL in Simulink Library Browser.

The following blocks are available:

� Analog input.

� Analog output.

� Digital input.

� Digital output.

� Encoder input. (Gives out an integer that indicates the condition of a
position sensor.)

10

5.2.2 Power Module

The power that operating the motors comes from one or two Universal Power
Modules.

6 Some Advice

� Set up a work folder locally under: C:\Users\yourUsename, when you
start the day. This will help avoiding many unknown errors. This
folder may be deleted until next time, so you must save your
work to a USB stick or use the “Home directory”/“hjemmeomr̊ade”
functionality, before leaving the lab for the day. Running the code
from a USB stick or the “hjemmeomr̊ade” directly is a bad idea and
will quite often(/always) fail. The lab computers do not have access
to the internet, so you may not use any other cloud based services.

� Errors may arise during compilation. It is a good idea to wait to start
the helicopter, until the compilation is finished. It is also important
that the compilation is done by “Build for Monitoring”.

� If inexplicable error messages arise during compilation, there are a
couple of things that may help. First, erase all compiled code and
start over again. If this does not help, try restarting the computer.

� If something is not working properly or is broken, notify the student
or teaching assistant.

7 Starting Point for the Programming

A ready-made Simulink block diagram should be used as the basis for your
program. You will need the following files:

� helicopter: Simulink-diagram of helicopter, half-made.

� init0i.m: contains the physical data for the helicopter number i.

These files can be downloaded from Blackboard. Change the names of
the init0i.m file to init.m. No backup is taken of your own files, so remember
to do this yourself.

Some files that may be helpful for solving the project work are gen aeq.m,
gen q.m, and gen constraints.m. See the files for documentation/explanation.

11

Table 1: Parameters and values.
Symbol Parameter Value Unit

la Distance from elevation axis to helicopter body 0.63 m
lh Distance from pitch axis to motor 0.18 m
Kf Force constant motor 0.25 N/V
Je Moment of inertia for elevation 0.83 kgm2

Jt Moment of inertia for travel 0.83 kgm2

Jp Moment of inertia for pitch 0.034 kgm2

mh Mass of helicopter 1.05 kg
mw Balance weight 1.87 kg
mg Effective mass of the helicopter 0.05 kg
Kp Force to lift the helicopter from the ground 0.49 N

Table 2: Variables.
Symbol Variable

p Pitch
pc Setpoint for pitch
λ Travel
r Speed of travel
rc Setpoint for speed of travel
e Elevation
ec Setpoint for elevation
Vf Voltage, motor in front
Vb Voltage, motor in back
Vd Voltage difference, Vf − Vb

Vs Voltage sum, Vf + Vb

Kpp,Kpd,Kep,Kei,Ked Controller gains
Tg Moment needed to keep the helicopter flying

12

8 Model Derivation

To derive a model for the helicopter, one can formulate the moment balances;
this is done below. For a list of parameters and variables, see Table 1 and
2.

We start with the derivation of the model for elevation:

Jeë = laKfVs − Tg (2a)

so that

ë = K3Vs −
Tg

Je
, K3 =

laKf

Je
(2b)

The following PD controller is implemented to control the height:

Vs = Kep(ec − e)−Kedė, Kep, Ked > 0 (3)

This leads to the system

ë = −K3Kedė−K3Kepe−
Tg

Je
+K3Kepec (4)

In addition, an integral term is added, giving a PID controller. We
assume that the integral term counteracts the effect from the constant term
−Tg

Je
, so that these two terms can be ignored. The resulting system for

elevation is then

ë+K3Kedė+K3Kepe = K3Kepec (5)

The same can be done for the pitch angle:

Jpp̈ = Kf lhVd (6a)

so that

p̈ = K1Vd, K1 =
Kf lh
Jp

(6b)

The PD controller

Vd = Kpp(pc − p)−Kpdṗ, Kpp, Kpd > 0 (7)

is used to control the pitch angle. This leads to the following closed-loop
system

p̈ = K1(Kpp(pc − p)−Kpdṗ) (8a)

13

or

p̈+K1Kpdṗ+K1Kppp = K1Kpppc (8b)

Finally, we need a model for the travel (“vandring”). We start from
the moment balance. For small pitch angles, the force needed to keep the
helicopter flying is approximately Kp. The horizontal component of the
force gives the acceleration around the travel axis:

Jtṙ = −Kpla sin p (9)

We assume that the angle p is small, so that sin p ≈ p. Then,

ṙ = −K2p, K2 =
Kpla
Jt

(10)

Note that a positive pitch angle gives a negative travel acceleration. Also
remember that λ̇ = r.

The model we will use can then be summarize by

ë+K3Kedė+K3Kepe = K3Kepec (11a)

p̈+K1Kpdṗ+K1Kppp = K1Kpppc (11b)

λ̇ = r (11c)

ṙ = −K2p (11d)

All angles in the equations above are given in radians. Remember that
the measured angles from the helicopter model are recorded in degrees. The
controllers for pitch angle and elevation are tuned, and further tuning of
these controllers should not be necessary.

Based on the model, you may get the impression that there are no in-
teractions between elevation and pitch angle/travel. This is a result of the
assumptions made in the model derivation. Interactions between these vari-
ables are of course present.

9 Before you Start

The arrangement of the helicopters is as shown in Figure 6.

1 2 3 4 5 6 7 8 9 10

Room B113 Room B117 Room B121 Room B125

Figure 6: Arrangement of helicopters.

14

Since the helicopters are different, using the same helicopter for the en-
tire lab project is recommended.

For the report, you will be asked to include MATLAB code and Simulink
figures. To make it easier for yourselves, we suggest that you make copies
of your work as you go. Do not just have one matlab file and one simulink
file. For each subtask that involves running the helicopter, make a seperate
folder. This will make it easier when it comes to the report, but it will also
make it easier if you will need to re-run a previous task to collect data.

10 Exercises

The assignment is divided in four parts:

1. Repetition/introduction to use Simulink/QuaRC to control the heli-
copter. Familiarize yourselves with MATLAB/Simulink interaction.

2. Optimal control of pitch/travel with no feedback. An optimal open-
loop input sequence that moves the helicopter 180 degrees should be
calculated and implemented on the helicopter. (The helicopter mey
not behave exactly as the predicted state trajectory, since the pre-
calculated input trajectory is ’blindly’ applied)

3. Optimal control of pitch/travel with feedback (LQ control). Feedback
is now used to stabilize the open-loop state trajectory from part 2.
(The helicopter should now behave more closely to what was predicted
in part 2)

4. Optimal control of pitch/travel and elevation with feedback. (Similarly
to part 2, an open-loop optimal input/state trajectory is calculated.
That trajectory is then stabilized by a feedback controller)

The PID controllers modelled in section 8 ”Model Derivation” can be
assumed to be well tuned. We call these the “inner” control loops. We con-
sider setpoints for the inner loops, (pc and ec), as the manipulated variables
in (u(t)).

For each exercise, make sure you have done the section “Solve the follow-
ing tasks before coming to the lab” (hereafter: prework) before arriving at
the lab. It is possible to do the prework for all the exercises before
finishing the “At the lab” sections. If you have not yet seen the theory
in the lectures, fear not, all the required theory is either provided directly
or a reference to the material is given.

15

10.1 Repetition/introduction to Simulink/QuaRC andMAT-
LAB

This task consists of two introductory tasks. In the first task, you will learn
a few key points on how to work with MATLAB and Simulink. In the second
task, you will familirize yourself with the lab setup

10.1.1 Solve the following tasks before coming to the lab

Passing and storing data
The goal of this task is for you to familiarize yourselves with how you may
pass data from MATLAB to Simulink. We hope that this will save you a
good amount of time for the later tasks. In this task you will get experience
in how to:

� Pass data from MATLAB to Simulink. This will be needed later to
pass the optimal trajectories you find using quadprog/fmincon later
on.

� Store recorded data to a file. This will be needed for the step below.

� Load the recorded data and plot it. This will be needed for the report.

1. For this task you may either create your own files to play around, or
you may use those handed out at blackboard: “passing data training.m”
and “dummy system.slx”.

2. Create a suitable object of the hardcoded reference trajectories x travel ref

and x elevation ref . You may use the class timeseries in MATLAB.
The first argument is the values you want to pass, i.e., the “trajectory”.
The second argument is a vector of the time-steps.

3. Load the timeseries in Simulink. You may use the block “From workspace”
in Simulink. If you want to pass several vectors, of the same length,
to Simulink, then you could either stack them together as matrix of
several columns and make a timeseries out of it, or use two different
blocks in Simulink.

� If you use a matrix in the timeseries object, then you may want
to use a “demux” block in Simulink to have access to each of the
signals. Double click the “demux” block to choose the amount of
outputs.

4. Store the recorded data. Here we recommend to use the block “To
file”. Just like the for the loading process, you may either use a “mux”
to store several signals into one file, or you may use several “To file”
blocks.

16

� Double click the “To file” block. By default, the data are stored
as a timeseries. The lab setup only allows for “Array” option.

� You can also give the array a name, default is “ans”. Please
choose something more descriptive for your case.

� Please note that you, the users, must keep track of which sig-
nal corresponds to which column of the timeseries. The logic
is straight forward: the upper input signal to the mux is the
first column of the timeseries. However, if you keep changing the
Simulink file and the order of the inputs of the mux, this could
be hard to keep track of.

� Additional info: If you want the trajectory passed to Simulink and
the recorded data to have the same length, you should store both
in Simulink. This may make your lives a bit easier.

5. Load the recorded data for plotting. Here you may use the loaded data

= load(name of file) functionality in MATLAB.

� Try plotting the data and make the figures look good, e.g., use
title, legend, grid, axes descriptions, etc...

� Find a way to store the plots in a format that are suitable for
a report. Good choice: “eps”. Can you store the figures both
through code and through the Graphical User Interface?

When you have performed the steps above, you should be more confident
in how to work with data in the setting of Simulink and MATLAB. Hopefully,
you will now be able to focus on the more interesting part of the following
tasks. Note: You are not supposed to include anything from this task in the
report.

10.1.2 At the lab

Repetition/introduction to Simulink/QuaRC
This first exercise is meant to be a repetition for those who have completed
the helicopter lab in TTK4115 Linear System Theory and a quick introduc-
tion to Simulink/QuaRC to those who have not.

Set up a work folder locally, see Section 6.
Use the files helicopter.slx and initXX.m from Blackboard. Choose the

init file that corresponds to your helicopter.
Start MATLAB and go to your work folder. Run init.m and open the he-

licopter model in Simulink. Go through the different blocks in the Simulink
diagram and figure out what they do. To run the helicopter, go to QuaRC
→ Build. This command converts the Simulink block diagram to C-code,
compiles, links and downloads the program to QuaRC. When this is done,

17

Pitch controller (PD)
Elevation controller (PID)

Plant (helicopter)

[
Vd

Vs

]

Model-based optimization

u∗

x
Physical layer

Basic control layer

Optimization layer

Figure 7: Illustration of the layers in the control hierarchy used in Section
10.2.

the QuaRC will start. Start the real-time program, and verify that the
controllers work. Try changing the setpoint for pitch and elevation.

Try opening some of the real-time plots (remember that this must be
done from the QuaRC). See for example the plots for pitch angle and ele-
vation. Notice that all the states are not measured. The three angles are
measured, but the angular velocities are estimated.

10.2 Optimal Control of Pitch/Travel without Feedback

In this part of the exercise we will disregard elevation, that is, we assume
e = 0. We will then calculate an optimal trajectory x∗ and a corresponding
optimal input sequence u∗. This input sequence will be implemented as
setpoints for the inner controllers, but we will not feed back the measured
state to correct for deviations from the optimal trajectory. This control
hierarchy is illustrated in Figure 7.

10.2.1 Solve the following tasks before coming to the lab

1. Write the model on continuous time state space form

ẋ = Acx+Bcu (12)

with x =
[
λ r p ṗ

]⊤
and u = pc. What are we modeling here? Is

it just the helicopter? Discuss what the model includes, and how it

18

relates to Figure 7.

2. Discretize the model using the forward Euler method and write the
resulting model on discrete time state space form

xk+1 = Axk +Buk (13)

3. Calculate an optimal trajectory for moving the helicopter from x0 =[
λ0 0 0 0

]⊤
to xf =

[
λf 0 0 0

]⊤
when the elevation angle is

assumed to be constant. Use λ0 = π and λf = 0. Also implement the
constraint

|pk| ≤
60π

360
, k ∈ {1, . . . , N} (14)

on the pitch angle. Why do we need this constraint? Is it necessary
to also implement this constraints on the pitch reference angle pc? We
want to minimize the cost function

ϕ =
N−1∑

i=0

(λi+1 − λf)
2 + qp2ci, q ≥ 0. (15)

Solve the optimization problem using the MATLAB function “quad-
prog”. Try using the values q = 0.12, q = 1.2, and q = 12 as weights.
Plot the manipulated variable and the output. Comment the results
with respect to the different weights chosen. Remember that some
useful files are posted on Blackboard. Use a sampling time of 0.25 s
and N = 100.

Hints: To use the quadprog function in MATLAB, you need to for-
mulate the optimization problem as a QP problem in standard form.
Start by defining a large vector z containing all the variables that
should be optimized:

z =
(
x⊤1 , . . . , x

⊤
N , u⊤0 , . . . , u

⊤
N−1

)
,

and use this definition when constructing the objective function and
constraints. For more hints read Chapter 3.5 in “Merging Optimiza-
tion and Control” by Foss and Heirung, which should be on Black-
board. This chapter consists of two examples of “finite horizon optimal
open loop optimization”, which is exactly what we need! A template
and some helper functions to these assignments have also been posted
on blackboard. Using this template is optional but try to use a similar
structure if you implement everything from scratch. Having a similar
structure will make it easier for the student assistants to help you and
evaluate your results.

19

For the daring:
The term (λi+1 − λf)

2 penalizes the travel angle at all time points,
by its deviation from the desired final angle λf . As the helicopter is
not initiated at the final angle (λ0 ̸= λf), this term has large values
for at least some of the first angle values (λi, i = 1, 2, .., ?). Is this a
good way to make sure that the objective function drives the system
to λf? How does this term scale compared to the other term, qp2ci?
Could the optimization problem be formulated in another way, and
still drive the travel angle to λf? Another feature of this objective
function is that the helicopter will not accept being at λf + 2π, even
though this is the same angle in the practical setup. Unless there are
wires or similar that are tangled up if the helicopter rotates, the user
may be ok with any number of rotations. It might be tempting to use
the modulo operation to solve this problem. How might that look? Is
there a potential issue with this approach?

4. The optimization in 3) gives the manipulated variable u. It may be a
good idea to add some zeros at the beginning of the input vector, so
that the helicopter has time to rise to and stabilize at e = 0 before the
calculated open-loop sequence is applied. Also, adding zeros at the
end of the vector is recommended to keep the helicopter stable after
the input sequence is over. Add enough zeros to keep the helicopter
stable for at least 5 s before and after the optimal input sequence is
implemented. This padding (before and after) is already done in the
handed out template.

5. The specific implementation of the QP algorithm used here can only
weight deviations from origin (λf = 0). The position sensors on the
helicopter are relative, which means that the position is reset to zero
each time the helicopter is started. To get the helicopter to start in x0
you have to add a suitable value to the measurement. For example, you
can subtract 30◦ from the elevation measurement to get the helicopter
to fly at a reasonable height when ec = 0 (this is done in the given
file). Implement the input sequence generated in 3) with q = 1.

Hints: The easiest way to transfer the input sequence to Simulink is to
use a “From Workspace” block (which can be found under “Sources”
in the Library Browser). Have a look at the first exercise if you have
forgotten how to do this.

Note: You cannot run the simulink file without being at the lab, but
try to prepare the simulink file as much as possible.

6. Ask yourselves: Does the input trajectory seem fair/reasonable based
upon the goal of the task?

20

Pitch controller (PD)
Elevation controller (PID)

Plant (helicopter)

[
Vd

Vs

]

Model-based optimization

LQR

u

x∗u∗

x
Physical layer

Basic control layer

Optimization layer

Advanced control layer

Figure 8: Illustration of the layers in the control hierarchy used in Sections
10.3 and 10.4.

10.2.2 At the lab

7. Run your setup. Does the helicopter end in the desired point xf?
What causes the observed deviation?

10.3 Optimal Control of Pitch/Travel with Feedback (LQ)

10.3.1 Solve the following tasks before coming to the lab

1. We now introduce feedback in the optimal controller. This is done
by using an LQ controller. LQ stands for linear quadratic, which
means that this controller minimizes a quadratic criteria for a linear
model. From the optimal trajectory calculated in exercise 2, we have
an optimal input sequence u∗ and an optimal trajectory x∗. Using the
following manipulated variable will introduce feedback:

uk = u∗k −K(xk − x∗k) (16)

As long as the system is following the calculated optimal trajectory
x∗ the calculated input sequence u∗ is implemented. If a deviation
from x∗ is observed, the manipulated variable will be modified by the
feedback term. This new control hierarchy is illustrated in Figure 8.

A good choice for the gain matrix K must be found. The gain could
be calculated in several ways (for example using pole placement), but

21

here we will calculate it as an LQ controller. An LQ-controller (in
discrete time) minimizes the quadratic objective function

J =
∞∑

i=0

∆x⊤i+1Q∆xi+1 +∆u⊤i R∆ui, Q ≥ 0, R > 0 (17)

for a linear model
∆xi+1 = A∆xi +B∆ui (18)

without including inequality constraints. Here, ∆x and ∆u are devia-
tions from the optimal trajectory,

∆x = x− x∗ (19a)

∆u = u− u∗ (19b)

In MATLAB you can use the function dlqr to calculate the optimal K
matrix. Q and R indicates how much you want to penalize deviation in
the states, and how much you want to penalize use of the manipulated
variable. Use diagonal matrices for Q and R. A diagonal matrix is
easily made in MATLAB using the function diag.

2. Implement the feedback on the helicopter. This is done in Simulink
using the following blocks Mux, Demux, Matrix Multiplication, Sum,
and “From Workspace”.

Note: You cannot run the simulink file without being at the lab, but
try to prepare the simulink file as much as possible. Hint: Notice that
the “From Workspace” block can import several values (a matrix),
meaning only one block is required for x.

22

3. An alternative strategy would be to use Model Predictive Control(MPC),
which uses predictive optimization several times during the flight.
There are two main ways of implementing an MPC control scheme:

� (A) Rather than stabilizing the predicted trajectory x∗ with an
LQ regulator, one can simply re-optimize from the new measured
position to get a new prediction x∗new, then apply the newest
prediction u∗new to the system.

� (B) Stabilize the initially predicted trajectory using MPC control
rather than with LQ regulation.

How would you implement the MPC scheme (A)? Discuss advantages
and disadvantages with an MPC controller (A) compared to the con-
troller you have implemented (prediction +LQ). Also, what would the
structure in Figure 8 look like if you used MPC (A).
For the daring:
How would you implement the MPC controller (B), and what would
the structure in Figure 8 look like if you used the MPC scheme (B).
Here we don’t want a detailed description, but only short explanation.
What are some advantages and disadvantages of using (B) rather than
(A)? Can you somehow combine these two approaches?

10.3.2 At the lab

4. Run the helicopter. Try different values for Q and R used in the LQ
controller to generate K-matrix. Justify your choice

5. Discuss and analyze the results and compare them with those obtained
in the previous task.

10.4 Optimal Control of Pitch/Travel and Elevation with
Feedback

In this task we include the dynamics of elevation, e. The helicopter is moved
from x0 to xf past a restriction causing the elevation angle to change during
the flight. We must therefore add the elevation to the state vector; the
setpoint ec is a new manipulated variable in the system.

10.4.1 Solve the following tasks before coming to the lab

1. Write the system on continuous state space form with the two extra

states e and ė. Use x =
[
λ r p ṗ e ė

]⊤
and u =

[
pc ec

]⊤
.

2. Discretize the model using the forward Euler method and write the
resulting model on discrete state space form.

23

3. Inequality constraints on the elevation should now be implemented.
The constraint is

ek ≥ α exp
(
−β(λk − λt)

2
)
∀k ∈ {1, . . . , N} (20)

This is a nonlinear constraint. A QP solver can only solve problems
with linear constraints, so we must use another function to solve the
optimization problem. Instead we will use “fmincon” as this an SQP-
type algorithm. See the documentation for a description of the func-
tion and how to use it.

The criteria to be minimized is now

ϕ =
N−1∑

i=0

(λi+1 − λf)
2 + q1p

2
ci + q2e

2
ci (21)

Start with q1 = q2 = 1 and see if there are other values that give
a better result. Remember to include the equality constraints given
from the model equations in the optimization problem. Use α = 0.2,
β = 20 and λt =

2π
3 . For every point in time a constraint on the form

c(xk) = α exp
(
−β(λk − λt)

2
)
− ek ≤ 0 (22)

must be implemented and passed to fmincon.

Start with a relatively short time horizon (12–15 time steps). Use
∆t = 0.25 s. Try optimizing over a horizon of approximately 10 s,
that is, N = 40. We use a shorter horizon in this exercise than in the
previous exercises because performing the optimization over the same
horizon will take some time.

4. Implement the changes needed in the simulink diagram. Introduce
feedback in the same way as in exercise 3, except now the system has
more states.

Note: You cannot run the simulink file without being at the lab, but
try to prepare the simulink file as much as possible.

5. Ask yourselves: Does the input trajectory seem fair/reasonable based
upon the goal of the task?

10.4.2 At the lab

6. Implement the optimal input sequence on the helicopter with an LQ
controller active. Does the helicopter follow the trajectory?

7. Notice that the first 4 states in the model are completely decoupled
from the last 2. There is clearly a connection between pitch and el-
evation in the real setup, since when p = π

2 there is no way for the

24

helicopter to apply force to neither increase nor maintain elevation. In
Section 8, the model is derived, but it starts with: Jeë = laKfVs−Tg.
Already here, the elevation dynamics are independent of pitch. The
true relationship is sinusoidal in nature: ë = CpVs cos(p) + Ce cos(e).
Since the model doesn’t ‘know’ about how pitch affects the elevation
dynamics one would think that the controller would crash the heli-
copter, why does it still work? (there are two good reasons)
If you wanted to improve the controller by accounting for this connec-
tion, there are ways one can do that. Below are some suggestions for
how one might improve the controller, but some of them are bad sug-
gestions and some are viable. For each suggestion, determine whether
they are good or bad suggestions, and explain why. Suggestions:

A Rewrite Equation 2 as: ë = CpVs cos(p) + Ce cos(e), and write
the dynamic on state space form: ẋ = f(x, u).

B Add “+
∑N

k=1

(
ėk − ėk−1 −∆tCpVs cos(pk) −∆tCe cos(ek)

)2
” to

the objective function.

C For every few time steps during flight, adjust the Q-weight in the
LQ controller based on the pitch angle:

Q =

qλ 0 0 0 0 0
0 qr 0 0 0 0
0 0 qp 0 0 0
0 0 0 qṗ 0 0
0 0 0 0 qe 0
0 0 0 0 0 qė · cos(p)

8. Optional exercise: Try implementing the suggested solutions above,
and see if they work. Also try adding more constraints on the states,
and play around with various nonlinear constraints. These may be
constraints on maximum allowed speed ė and λ̇. This task does not
give bonus points, but gives a very good overall impression.

25

11 Additional Information

11.1 Recording Data

If the method for recording data described in Section 5.1 does not work, try
the following method instead.

1. Use the “To file” block, see Figure 9.

2. Connect the block to a signal you want to measure. Input some suit-
able parameters, and note that the format has to be Array — see
Figure 10.

3. After running the system, you can access and plot the data using
something like the following commands:

>> load(’e.mat’)

>> plot(e_measured(1,:0), e_measured(2,:0))

where the first row of e_measured is time and the second row is the
data. En example result is shown in Figure 11.

Figure 9: Location of the “To file” block in the Simulink library browser.

26

Figure 10: The block (in light blue) connected to the elevation measurement,
and the parameters dialogue. Note that format has to be “Array”.

27

Figure 11: Resulting plot.

28

	Practical Information
	Health, Safety, and Environment (``HMS'')
	Objective
	Lab report
	Plots

	System Description
	QuaRC, Simulink, and Realtime Workshop
	Hardware
	Quanser Q4
	Power Module

	Some Advice
	Starting Point for the Programming
	Model Derivation
	Before you Start
	Exercises
	Repetition/introduction to Simulink/QuaRC and MATLAB
	Solve the following tasks before coming to the lab
	At the lab

	Optimal Control of Pitch/Travel without Feedback
	Solve the following tasks before coming to the lab
	At the lab

	Optimal Control of Pitch/Travel with Feedback (LQ)
	Solve the following tasks before coming to the lab
	At the lab

	Optimal Control of Pitch/Travel and Elevation with Feedback
	Solve the following tasks before coming to the lab
	At the lab

	Additional Information
	Recording Data

